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Abstract 

Item parameter estimates vary for a variety of reasons, including estimation error, characteristics 

of the examinee samples, and context effects (e.g., item location effects, section location effects, 

etc.). Although we expect variation based on theory, there is reason to believe that observed 

variation in item parameter estimates exceeds what theory would predict. This study examined 

both items that were administered linearly in a fixed order each time that they were used and 

items that had appeared in different adaptive testing item pools. The study looked at both the 

magnitude of variation in the item parameter estimates and the impact of this variation in the 

estimation of test-taker scores. The results showed that the linearly administered items exhibited 

remarkably small variation in parameter estimates over repeated calibrations. Similar findings 

with adaptively administered items in another high stakes testing program were also found when 

initial adaptively based item parameter estimates were compared with estimates from repeated 

use. The results of this study also indicated that context effects played a more significant role in 

adaptive item parameters when the comparisons were made to the parameters that were initially 

obtained from linear paper-and-pencil testing. 
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Computer-based testing, and adaptive testing in particular, typically depends upon item 

response theory (IRT). The advantages of IRT are well-known through the testing literature and 

have fueled the transition of computerized adaptive testing (CAT) from a research interest to a 

widely used practical application. However, the introduction of computer-based testing in high 

volume, high stakes settings has presented new challenges to testing practitioners. In most 

computer-based testing programs, it is necessary to administer items repeatedly over time. This 

continuous item exposure raises security concerns that were not fully appreciated by researchers 

when the theory and practice of CAT were first developed. 

In most CAT programs, steps are taken to protect the integrity of item pools through 

strategies such as item exposure control, pool rotation, and accelerated item development (Way, 

1998). Despite such efforts, maintaining CAT programs remains difficult because adaptive 

algorithms tend to select the most highly discriminating items. Efforts to increase item 

development bring increased costs and diminishing returns. As these items become exposed and 

are retired from use, developing sufficient replacement items of the same quality is very difficult: 

Three or four items may need to be written to find a suitable replacement. Furthermore, the lag 

time between the initial writing of the items and use of the items in an operational CAT pool is 

usually significant, as items must be pretested, calibrated, and evaluated before they may be used 

operationally. 

Recently, researchers at ETS have begun exploring an approach to adaptive testing that 

could address some of the challenges of item exposure and pool maintenance (Bejar et al., 2002). 

Bejar (1991) referred to this approach as generative testing. More recently it has been called item 

modeling. The essence of item modeling is to create items from explicit and principled rules. The 

approach has roots in computer-assisted instruction and domain-referenced testing (Hively, 

1974). The obvious vehicle for item modeling is the computer, and successful applications of 

automated item generation have been reported by a number of researchers (Embretson, 1999; 

Irvine, Dunn, & Anderson, 1990; Irvine & Kyllonen, 2001). 

Although the capability to develop item models and generate items automatically is more 

easily established for some item types than for others, the potential utility of automated item 

generation for supporting computer-based testing is obvious. An effective item model provides 

the basis for a limitless number of items, each of which is assumed to share the same content and 

statistical characteristics. In CAT, the adaptive algorithm could choose an item model based on 
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the common psychometric characteristics, and the actual instance of the item would be generated 

at the time of delivery. Such an approach was referred to as on-the-fly adaptive testing by Bejar 

et al. (2002). They carried out a feasibility study of a CAT application where item models were 

utilized and concluded that the adaptive generative model they employed was both technically 

feasible and cost effective. 

From a traditional IRT perspective, the use of item models with adaptive testing seems 

far-fetched. In fact, much of the IRT literature in recent years has centered on item parameter 

estimation and parameter recovery, the idea being that successful applications of IRT depend 

upon well-estimated parameters. The notion that one could use a single set of IRT estimates to 

characterize all of the items generated from a particular model directly contradicts the goal of 

obtaining accurate item parameter estimates. However, such a perspective does not account for 

the variation that may occur in student scores due to a variety of effects that influence how test 

items are responded to in the real world. These include context effects, item position effects, 

instructional effects, variable sample sizes, and other sources of item parameter drift that are 

typically not formally recognized or controlled for in the context of CAT. 

Several researchers have documented the existence and influence of such item level 

effects. Sireci (1991) looked at the effect of sample sizes on the stability of IRT item parameter 

estimates. Kingston and Dorans (1984) described such effects in equating the paper-and-pencil 

GRE. Leary and Dorans (1985) and Brennan (1992) reviewed literature related to context effects 

and provided guidelines on how such effects might be minimized. Zwick (1991) described a case 

study of how context effects created an anomaly in the Reading test scores on the National 

Assessment of Educational Progress (NAEP). Divgi (1986) documented changes in item 

parameter estimates in an early application of the Armed Services Vocational Aptitude Battery 

(CAT-ASVAB). Several researchers have investigated causes of item parameter drift in testing 

programs that utilized IRT in test construction and equating over time (Eignor & Stocking, 1986; 

Kolen & Harris, 1990; Sykes & Fitzpatrick, 1992; Way, Carey, & Golub-Smith, 1992). 

In considering the viability of item models for CAT, we recognize that variation within 

models introduces a source of errors that is not present in traditional CAT. However, the 

repeated use of the same items across different CAT pools also introduces a source of errors that 

is tolerated but not accounted for. The purpose of this study was to investigate and to quantify 

the error that is currently tolerated in item parameter estimates for different sets of items used in 

2 



computer-based testing. The study examined items that were administered repeatedly to different 

examinee samples over time. We examined items that, each time they were used, were 

administered linearly in a fixed order and also items that had appeared in different adaptive 

testing item pools. We examined both the magnitude of variation in the item parameter estimates 

and the impact of this variation on the test takers’ scaled or reported scores. 

Case Study 1: Linear Administration of Items 

Data 

In order to carry out the investigation of the stability of parameter estimates in linearly 

administered tests, two sets of items from a high stakes admissions test were chosen. The first set 

was composed of 28 items from the Quantitative (QNT) measure, while the second set consisted 

of 30 items from the Verbal (VBL) measure of the same test. Since ability distributions for the 

Quantitative measure are known to change more rapidly than the other measures, a greater 

variation in the parameter estimates was expected for that measure. 

The items contained in the two sets come from actual test administrations in which these 

items were used as anchors to place parameter estimates on the base scale for other items in the 

linearly administered pretest sections. In every online pretest calibration for these CAT 

programs, anchor items are administered as similarly as possible to pretest items. The 

composition of the anchor set mirrors the pretests in terms of psychometric and content 

characteristics; the number of items in the pretest and anchor set is the same. The Verbal and 

Quantitative anchor items evaluated in the study were used over a 2-year period and were 

calibrated for each administration of the corresponding pretest measure. Thus nine repeated 

calibrations were available for each anchor item. The average item parameter estimates for both 

Quantitative and Verbal measures are presented in Table 1. 

The calibration samples were randomly obtained by spiraling the pretest forms across 

examinees. The sample sizes used to calibrate each item varied from 627 to 2,305 for the 

Quantitative measure and 830 to 2,284 for the Verbal measure. The details of sample sizes used 

for each calibration are presented in Table A1. The perfect response patterns were excluded from 

each of the response sets; the resulting sample sizes are presented in the last column of that table. 
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Table 1 

Average Item Parameter Estimates (a, b) 

Calibration a-parameter b-parameter
 Mean St. dev Mean St. dev

QNT   
1 0.842 0.342 –0.020 1.163
2 0.852 0.348 –0.008 1.145 
3 0.826 0.340 –0.028 1.166 
4 0.764 0.365 –0.042 1.341 
5 0.764 0.297 –0.030 1.256 
6 0.779 0.272   0.016 1.208 
7 0.818 0.339 –0.047 1.235 
8 0.755 0.335 –0.182 1.305 
9 0.775 0.299 –0.036 1.175 

VBL      

1 1.003 0.292 –0.090 1.150 
2 0.983 0.290 –0.034 1.205 
3 0.954 0.279 –0.065 1.222 
4 0.967 0.270   0.035 1.229 
5 1.024 0.291   0.045 1.124 
6 1.129 0.313   0.046 1.059 
7 0.970 0.278 –0.010 1.114 
8 1.020 0.301   0.010 1.107 
9 0.954 0.275 –0.061 1.186 

 

Parameter Estimation Methodology 

The item parameter estimates were obtained using the software LOGIST (Wingersky, 

Patrick, & Lord, 1988). LOGIST uses the joint maximum likelihood estimation methodology to 

estimate item parameters, keeping the ability parameters fixed, while formulating item parameter 

estimates. The ability parameters in this case were the actual ability estimates obtained on the 

operational section of the test. The estimates on the linearly administered items were then 

subjected to scaling using the test characteristic curve methodology proposed by Stocking and 

Lord (1983). In this study, the stability of estimates on both sets of anchor items was investigated 

after the scaling was carried out. 
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Analyses 

In order to look at the general trends in the variation of individual parameter estimates the 

a, b, and c parameters were plotted for each item across calibrations. The purpose of this analysis 

was simply to get an idea of any directional change that could occur in some items over time. In 

order to look at the effect of parameter estimate variation on the probability of getting an item 

correct, the item characteristic curves were examined for each item across nine calibrations for 

both measures. The weighted Root Mean Squared Errors (RMSE) were then computed between 

the item characteristic curves for the various calibrations in relation to the first calibration. In 

other words the first calibration was chosen as a point of reference for all comparisons in this 

case. The RMSE in this case is defined as 

 

 
n

2
1

1

( ( ) ( ))jic ic j i j
j

RMSE w P Pθ θ
=

= −∑ ,  (1) 

 

where )( jicP θ is the probability of getting an item (i) correct in a calibration (c) at an ability level 

jθ . The weight wj is the proportion of examinees out of the total number of examinees and n is 

the number of ability levels. The ability levels (and the corresponding weights) were derived 

from the reference paper-and-pencil (P & P) base form ability distribution for this particular 

program on the number-right scale. The number-right score levels ranged from 10 to 59 for 

Quantitative and 15 to 75 for Verbal resulting in 11 and 13 ability levels for the two measures 

respectively. The levels were then converted on to the theta metric as listed in Table 2. These 

ability levels ranged from –3.839 to 3.546 for Quantitative and –5.855 to 4.881 for Verbal. 

This index was used in similar research performed at ETS where the item characteristic 

curves (ICCs) obtained on different calibrations were compared (Guo, Stone, & Cruz, 2001; 

Rizavi & Guo, 2002). The RMSEs were then plotted for each item across calibrations to capture 

variation for items. 
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Table 2 

Ability Levels and Corresponding Weights for Quantitative and Verbal Measures 

 Quantitative Verbal 

Level Ability Weight Ability Weight 
  1 –3.839 0.001 –5.855 0.000
  2 –2.184 0.029 –3.355 0.006
  3 –1.381 0.100 –2.337 0.019
  4 –0.812 0.158 –1.635 0.049
  5 –0.348 0.172 –1.074 0.111
  6   0.053 0.155 –0.585 0.175
  7   0.427 0.125 –0.127 0.195
  8   0.807 0.106   0.329 0.163 
  9   1.242 0.094   0.800 0.130 
10   1.882 0.055   1.298 0.084 
11   3.546 0.003   1.856 0.051 
12     2.608 0.017 
13     4.881 0.000 

 

Another interesting way to look at the variation is to estimate the variance-covariance 

matrix of item parameter estimates. Several alternatives are available for computing the sampling 

variances of item parameter estimates. The first is to use standard large-sample theory, which 

holds that the asymptotic variances of < cba ,, > are given by the inverse of the 3 x 3 Fisher 

information (I) matrix evaluated at the true parameter values <a, b, c> (Lord, 1980; Hambleton, 

Swaminathan, & Rogers, 1991) defined as, 
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The diagonal elements of the matrix represent the information associated with each 

parameter. The problem, of course, is that the true parameters are unknown. Our best 

approximation is then to evaluate information at the values of the parameter estimates < cba ,, > 

and hope that these are reasonably close to the true values. The estimates were averaged across  
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nine calibrations to obtain the best estimate for each item. It is, however, true that the 

item parameter estimates are often constrained to avoid taking on inappropriate values (e.g., 

negative a-parameters or c-parameters outside the range [0, 1]). Such constraints are liable to 

upset asymptotic theory and render the sampling variance approximations less valid. 

In the current situation, a second means is available for estimating sampling variation. 

The items under study were administered on nine separate occasions, and parameter estimates 

were separately obtained from each administration sample. The observed variation across these 

estimates is therefore an empirical estimate of the sampling fluctuation of the parameter 

estimates defined as, 
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In theory, and under all of the assumptions of that theory, the empirical and asymptotic 

estimates of sampling variation should be very similar. However, the empirical variances are 

only based on nine observations and may not be very stable. Both asymptotic and empirical 

sampling variance estimates are therefore problematic to some extent. It was therefore decided to 

repeat the analyses with both. 

The last and the most affirming set of analyses was performed to look at the effect of 

variation in the item parameter estimates on the actual reported scores. The responses of 

examinees on the anchor items were selected for the nine sets of calibrations on both measures. 

A typical ability distribution for the examinees during an administration is given in Figure A5 for 

both Quantitative and Verbal. Each response set was then scored using the set of item parameter 

estimates obtained on it during calibration process and then using the parameter estimates 

obtained using each of the other eight sets of responses. Hence 9 sets of scores were obtained 

from each response set. A grand total of 81 sets of scores were produced from the total of 9 

response sets. The scoring was carried out using maximum likelihood estimation methodology 

(Lord, 1980; Hambleton et al., 1991). RMSE statistics between each set of the baseline theta 

estimates (or scores obtained using the set of item parameter estimates obtained on the same 
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response set during calibration process) and the estimates from each of the other eight sets were 

then computed. The statistic was defined as, 
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where  is the ability estimate obtained for an examinee j on examinee set (or response set) k 

using item parameter estimates obtained by calibrating response set k. On the other hand,  is 

the ability estimate for an examinee j on examinee set k, using item parameter estimates obtained 

by calibrating response set c. 

kjθ̂

cjθ̂

The ability estimates were then mapped on to the reported score scale and the 

distributions of differences (Scorecj - Scorekj) for each of the 81 scenarios were plotted. The 

differences were expressed on the operational or reported score scale where the reported scores 

for this particular program are expressed in 10-point intervals. 

Case Study 2: Adaptive Administration of Items 

Estimation Methodology 

The second part of this investigation was carried out on a set of adaptively administered 

operational items from another high stakes admissions test. This particular program uses the item 

specific prior methodology with a proprietary version of computer software PARSCALE 

(Muraki & Bock, 1999). This methodology allows unique multivariate normal distributions to be 

used as prior distributions for the parameters of each item (Swaminathan & Gifford, 1986; Folk 

& Golub-Smith, 1996). These item specific priors are actually the mean estimates of the (b, a, c) 

parameters as well as the asymptotic variance-covariance matrix specified as (Intercept, a, c). 

These priors are used for the CAT operational items and are different for each item, as they are 

item specific. On the other hand, global priors are used for the pretest items and are the same for 

all pretest as well as anchor items. The global prior distributions for the a-parameter are 

approximated by lognormal distribution, b-parameter distributions are approximated by normal, 

and the c-parameter prior distributions are approximated by beta distribution. All pretest, anchor, 

and CAT items are calibrated together for an administration. In this case, pretest or anchor items 
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are actually embedded in the operational test. This is unlike the previous case, where a pretest or 

anchor set is offered as a separate section. Since the priors on the CAT items are strong, their 

values hardly move away from their original values. The CAT items, therefore, set the scale; 

thus, putting all items on the same scale. Once calibrated, the pretest item parameter estimates 

are stored in the item bank to be used in subsequent pools, while the operational item parameter 

estimates are not used further. This methodology has been shown to be effective in utilizing data 

from operational items that do not have a uniform distribution of ability, since they are 

administered adaptively. 

Data 

The data for this investigation came from the Quantitative measure of an adaptively 

administered high stakes admissions test. Items that had already appeared in operational pools 

and had been included in several pretest calibrations to hold the scale (with item specific priors 

on them) were identified. In order to obtain relatively uniform ability distributions, 30 items that 

were slightly easy, mid-difficulty, or adequately difficult and had sample sizes larger than 500 

associated with them were chosen. The item parameter estimates for these items were originally 

obtained when they were pretested in P & P administrations before the introduction of CAT. The 

mean and standard deviations for the original a, b, and c parameters are give in Table 3. 

Table 3 

Mean and Standard Deviations for the a, b, and c Parameters (Original P & P) 

  a b c 

Mean 1.07 0.23 0.16 

Stdev 0.19 0.72 0.05 
 

All chosen items had appeared in several pools and had been included in at least 8 

calibrations. The number of calibrations available on these items is given in Table 4. 

The ability distributions of examinees who received these items in each calibration were 

inspected to make sure that the range of examinee abilities for each of these items was not 

restrictive. For the purpose of this investigation, all calibrations were rerun with the following 

modification: the item specific priors were removed and global priors were imposed on these 
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CAT items, thus they were treated like other pretest items. The modified requests for the 

calibration were resubmitted using ETS-specific software called GENASYS, which uses 

PARSCALE for calibration. Items were then calibrated in this modified way and new parameter 

estimates were obtained. 

Table 4 

Number of Calibrations  

No. of items No. of calibrations 
  5   8 
12   9 
  7 10 
  6 11 

 

Analyses 

Similar to the previous case study, the item characteristic curves were examined for each 

item. The weighted RMSEs were then computed between the ICCs for the first calibration, 

compared with the other calibrations as discussed in the previous study. The first calibration was 

arbitrarily chosen as the point of comparison. 

The next part of the analyses involved looking at the effect of variation in parameter 

estimates on ability estimation. Unlike the linear case, where a fixed number of calibrations were 

available on each item, the number of calibrations varied in this case (as shown in Table 5, the 

number of calibrations on various items varied from 8 to 11). Thus, 20 sets of item parameter 

estimates were generated for each item by drawing parameters at random from the various 

calibrations available for that item (except the first calibration). A response set was obtained by 

generating responses for 1,000 examinees at 11 ability levels corresponding to the ability levels 

listed in Table 5. These ability levels are obtained on the number-right scale from the reference P 

& P base form. The number-right score for this particular test ranged from 0 to 60, resulting in 

11 ability levels with a 6-point interval. The ability levels when converted on to the theta metric 

ranged from –3.138 to 2.592. 

The item parameter estimates used to generate the response set came from the first 

calibration and were considered as the baseline estimates. The response set was scored using 
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baseline parameter estimates from the first calibration, as well as using the 20 other randomly 

chosen sets of estimates. 

Table 5 

Ability levels and corresponding weights for Quantitative CAT 

 Level Ability Weight 
  1 –3.138 0.007 
  2 –1.970 0.057 
  3 –1.289 0.107 
  4 –0.772 0.145 
  5 –0.337 0.163 
  6   0.054 0.154 
  7   0.426 0.135 
  8   0.800 0.110 
  9   1.210 0.077 
10   1.725 0.039 
11   2.592 0.005 

 

The first set of scores was then compared to the other 20 sets of scores. RMSEs were 

computed between the various sets of ability estimates at each ability level. Since rectangular 

distribution was simulated, the mean sum-of-squares at various ability levels were weighted in 

order to compute the overall RMSE. The ability estimates were then converted to scaled or 

reported scores and the distributions of differences between those scores obtained using various 

sets of estimates were compared. The differences were expressed on the operational or reported 

score scale where the reported scores for this particular program are expressed in 1-point 

intervals. 

Next, the scoring analyses were repeated by generating response data using the item bank 

parameters for these items. As mentioned earlier, these parameters were originally obtained from 

P & P pretest calibrations. These analyses were expected to reveal more variation in scores due 

to P & P context effects in addition to positional effects obtained from adaptive administrations. 

In real calibrations, these estimates are used as priors for the corresponding items; hence, it is 

important to know whether such context effects influence the parameter estimation. The response 

set was then scored using the same set of item parameter estimates as well as the remaining 20 

sets of estimates. 
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Results 

The results of the analyses on linearly administered items are presented first, followed by 

the adaptively administered items. 

Results for Case Study 1 

It should be noted that, for the sake of brevity and clarity, results for Quantitative and 

Verbal are presented and discussed side-by-side; however, the authors do not intend to compare 

the two measures. Figure 1 presents the test characteristic curves (TCC) for the set of anchor 

items for the two measures. 
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TCC for anchor items for 9 Verbal packages
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Figure 1. TCC for Quantitative and Verbal anchor items over nine calibrations. 

 

 

The TCCs for both measures were extremely close under both scenarios. Some variations 

at the tails of the curve are characteristic of the interaction between the abilities of examinees and 

difficulty level of the items. Those variations are also shown in the plots of ICCs presented in 

Figures A1 and A2 in Appendix A. The plots of ICCs for selected Quantitative and Verbal items 

show that the probabilities of getting an item right did not vary substantially across calibrations, 

except at the very extreme ends of the scale. The investigation of the general trends did not 

exhibit any directional change in the estimates. In other words, none of the items exhibited a 

systematic decrease or increase in the parameter estimates over repeated calibrations.  
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The RMSEs among ICCs for the two measures are shown in Figure 2. The actual values of 

the weighted RMSEs are presented in Tables A2 and A3. The RMSEs indicated a small variation 

between calibrations for both Quantitative and Verbal measures. The differences were slightly 

higher for Quantitative, especially for some of the items. An item with a very high difficulty level 

is what appeared to be the most variant in the Quantitative measure. Inspecting the sample sizes 

and ability distribution for that particular calibration of that item did not suggest any explanation 

beyond chance-level differences in responding for examinees at extreme ability levels. 
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Figure 2. Weighted RMSEs between ICCs between first calibration and the others. 

 

 

In comparing the model-based vs. empirical variation (see Figures A3 and A4), it was 

found that the model-based variation was larger than the empirical variation for both 

Quantitative and Verbal measures for the b-parameter. The model-based variance was highly 

affected by the magnitude of the b-parameter: very low b-parameters resulted in large values of 

model-based variance. In the case of the a-parameter, model-based variance was larger than the 

empirical variation for the Quantitative measure while smaller for the Verbal measure. The a-

parameters for Verbal were, in general, higher in magnitude. 
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In general, the results did indicate very small model-based and empirical variation in both 

a- and b-parameters, except for the model-based variance in b-parameter for Quantitative. As 

these items provide very little information, the extremely low b-parameters for some of the 

Quantitative items caused this variance. In general, these results should be interpreted with 

caution, as the samples for the analyses were not suitably sized.  

The results of scoring using the different sets of parameter estimates are presented in 

Figures 3 through 6. The results indicated that the RMSEs in ability estimates ranged from 0.13 to 

0.33 for Quantitative and 0.13 to 0.34 for Verbal where a response set used in a calibration was 

scored by item parameters obtained from different response sets (81 cases). Results of two such 

scenarios are shown in Figure 3, where Quantitative response sets 1 and 9, respectively, are scored 

using item parameter estimates obtained from each of the other response sets. The figures show 

that the error in estimates, when scored using different sets of parameter estimates, remained fairly 

consistent across calibrations. Similar scenarios for Verbal measure are presented in Figure 4.The 

differences in examinee reported scores, when scored using different sets of item parameter 

estimates, remained limited to a 0–20 point difference on the reported score scale for majority of 

the examinees (as mentioned before, the reported scale for this particular program is expressed in 

10-point intervals). Of the examinees, 83% to 98% (91% on average) exhibited a 0–20 point score 

difference for the Quantitative measure. Figure 5 illustrates this result for two typical cases. 
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Figure 3. RMSEs between ability estimates on a response set scored by its own and other 

sets of item parameter estimates—Quantitative. 

14 



 

 

 

 SE

 

 

 

 

VBL RMSE (cal. 9 vs. others)

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9
Calibrations

RM
SE

s

VBL RMSE (cal. 1 vs. others)

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9
Calibrations

RM
s

Figure 4. RMSEs between ability estimates on a response set scored by its own and other 

sets of item parameter estimates—Verbal. 

 

The first part of the figure shows response set 2 scored using item parameter estimates 

obtained on response set 1. The second part shows response set 9 scored using item parameter 

estimates obtained on response set 5. In the first scenario, 93% of the examinees exhibited a 0–

20 point difference in their reported scores, while 90% showed this difference for the second 

scenario. Similar results for Verbal are shown in Figure 6. The percentages of examinees 

exhibiting 0–20 point score differences ranged from 87% to 98% (94% on average) for Verbal. 
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Figure 5. Frequency distribution of reported score differences for Quantitative. 
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Figure 6. Frequency distribution of reported score differences for Verbal. 

 

Since the average Standard Error of Measurement (SEM) ranges from 35 to 45 points for 

the Quantitative measure and 30 to 40 points for the Verbal measure of this particular program, 

the results were promising for both measures. 

Results for Case Study 2 

The ICC plots for selected adaptively administered items are presented in Figure B1 in 

Appendix B. The weighted RMSEs between ICCs for the adaptive calibrations in comparison with 

first adaptive calibration are presented in Figure 7. These values are also presented in Tables B1 

and B2 for readers’ interest. The RMSEs among ICCs for those items revealed remarkably small 

variation. The values remained in the range of 0.01 and 0.20 for all items for all calibrations. 

When compared with scores based on first calibration, the differences in reported scores 

for the adaptive case, ranged from 0 to 2 points for 90% to 98% (96% on average) of examinees 

for 20 item parameter sets that were drawn from calibrations. At this point it is worth mentioning 

again that the reported score scale for this particular program is expressed in 1-point intervals. 

The consistency of the RMSEs in the ability estimates across 20 item parameter sets 

drawn from available calibrations is depicted in Figure 8. When investigated per ability level 

(Figure 9), a large portion of the error seemed to concentrate in the low ability levels. 
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Figure 7. Weighted RMSEs between CAT ICCs between first calibration and the others. 
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Figure 8. Weighted RMSEs between ability estimates on a response set scored by its own 

and another set of item parameter estimates—own set = 1st calibration. 
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Figure 9. Weighted RMSEs between ability estimates on a response set scored by its own 

and another set of item parameters by ability level—own set = 1st calibration.  
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Figure 10. Frequency distribution of reported score differences—comparison with 1st CBT 

calibration. 
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When P & P calibrated estimates of the items were used in place of the first calibration 

for comparison between calibrations, the results were quite different. Figure 11 shows the 

RMSEs between theta estimates obtained on the P & P calibrated sets of parameter estimates and 

20 sets of estimates obtained on CBT calibrations. The results indicate an increase of overall 

RMSEs, when abilities obtained using P & P estimates were used for comparison. While the 

scenario where comparisons were based on 1st calibration and the overall RMSEs between 

scores ranged from 0.12 to 0.20, the errors ranged from 0.19 to 0.30 here. The errors in the 

scores remained significantly small at the middle ability levels, higher for the high ability levels, 

and highest for the low ability levels, when compared across ability levels. The errors were as 

high as 0.63 at the lower ability levels. 
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Figure 11. RMSEs between ability estimates on a response set scored by its own and other 

sets of item parameter estimates—own set = P & P bank parameters. 

 

 

The percentage of examinees that exhibited reported score differences between 0–2 

points on the reported score scale ranged from 87% to 94% (91% on average). This percentage 

was considerably smaller than the previous scenario where most of the cases resulted in more 

than 93% of the examinees exhibiting a 0–2 point difference. In other words, the percentage of 

examinees whose scores changed by more than 2 points was significantly large in this case. 
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Figure 12. Weighted RMSEs between ability estimates on a response set scored by its own 

and another set of item parameters by ability level—own set = P & P bank parameters. 
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Figure 13. Frequency distribution of reported score differences—comparison with P & P 

calibrated parameters. 
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The SEM for the Quantitative measure of this program usually ranges from 2.5 to 3.5 

points. In the first scenario, 96% of people exhibiting less than or equal to a 2-point difference 

represented an encouraging result. In other words, 4% of the examinees exhibited a difference of 

three-or-more points in their reported scores. For the second scenario, where bank parameters were 

used to score the responses, 9% of the examinees showed a difference of three-or-more points. 

Conclusions 

The studies discussed in this paper investigated the effect of stability of item parameter 

estimation in the current CBT calibrations. The results of the study will serve as a baseline for 

the design work involved in creating models for automated item generation. The concept of 

having a single model to generate a family of items should be informed by knowing the relative 

stability of the parameter estimates when calibrated online. 

Several conclusions can be drawn from the results of this study. The linearly 

administered items in a high stakes testing program exhibited remarkably small variation in 

parameter estimates over repeated calibrations. Although the sample sizes upon which the 

calibrations were performed varied considerably, the results were not affected. As long as the 

sample sizes are large enough to calibrate, stable results are produced. Similar findings with 

adaptively administered items in another high stakes testing program were also found when 

initial adaptively based item parameter estimates were compared with estimates from repeated 

use. These findings have implications for research on item modeling because they suggest that 

the use of item modeling with operational CAT programs will introduce more variation in ability 

estimation due to item context effects, positional effects, and the small sample sizes obtained for 

some items. It will be important to quantify and account for these sources of variation as this 

research progresses. 

The results of this study also indicate that context effects played a more significant role in 

adaptive item parameters when the comparisons were made to the parameters that were obtained 

from P & P testing. Even though PARSCALE was used to calibrate both sets of items, however, 

P & P items went through concurrent calibrations as opposed to item-specific prior methodology 

used for adaptive items; this fact may also have caused some variation. This suggests that the 

parameter estimates obtained on P & P administrations should be replaced,  
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whenever feasible, with the CBT calibrated parameters. The approach employed for this paper 

(i.e., freeing the item specific priors that constrain item parameter estimates for selected 

operational items during the process of pretest item calibration) is one possible alternative for 

this kind of updating. However, further research would be necessary to determine if this 

approach would be feasible in the context of an ongoing, operational CAT program. 
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Appendix A 

Table A1 

Sample Sizes for Each Calibration 

Calibration Total Act. sample size # of perfect Final sample 
 sample per anchor item scores   

QNT       
1   6,656 1,299   8 1,291 
2 10,178 1,420 15 1,405 
3 16,311 1,182   7 1,175 
4 20,018 1,115 11 1,104 
5   6,038    833   8    825 
6 17,949 1,432   6 1,426 
7 19,863 2,323 18 2,305 
8 16,493    858 14    844 
9 20,422    636   9    627 

VBL       
1 13,632 2,287   3 2,284 
2   8,774 1,066   2 1,064 
3 13,329    992   0    992 
4 14,697 1,118   4 1,114 
5 15,151 1,047   2 1,045 
6 11,026    876   3    873 
7   2,130 1,569   2 1,567 
8   5,869    834   4    830 
9 24,945    939   2    937 
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Figure A1. ICCs for four Quantitative items over nine calibrations. 

27 



 

 

 

 ab
ili

ty
 

 Pr
ob

 

 

 

 
Verbal Anchor Item 1 

0 

0.2 

0.4 

0.6 

0.8 

1 

-3 -2 -1 0 1 2 3 
Ability 

1
2
3
4
5
6
7
8
9

 Verbal Anchor Item 4 

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3
Ability 

Pr
ob

ab
ili

ty
 

1
2
3
4
5
6
7
8
9

 

 

 

 

 

  

 ba
b

 

 

 

 
Quantitative Anchor Item 14 

0 

0.2 

0.4 

0.6 

1 

-3 -2 -1 0 1 2 3 
Ability 

Pr
o

ili
ty

1
2
3
4
5
6
7
8
9

   0.8 

 
Quantitative Anchor Item 21

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

Ability 

Pr
ob

ab
ili

ty
 

1
2
3
4
5
6
7
8
9

 

Figure A2. ICCs for four Verbal items over nine calibrations. 
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Table A2  

Weighted RMSEs in ICCs for Quantitative Measure 

  2 3 4 5 6 7 8 9 
1 0.04 0.01 0.02 0.02 0.02 0.02 0.03 0.03 
2 0.03 0.01 0.03 0.02 0.02 0.02 0.03 0.04 
3 0.03 0.02 0.04 0.02 0.03 0.04 0.03 0.03 
4 0.03 0.03 0.04 0.04 0.01 0.02 0.02 0.04 
5 0.03 0.03 0.01 0.03 0.02 0.01 0.03 0.06 
6 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.04 
7 0.03 0.02 0.03 0.02 0.02 0.01 0.05 0.02 
8 0.01 0.01 0.00 0.02 0.02 0.02 0.04 0.02 
9 0.02 0.02 0.04 0.01 0.03 0.02 0.02 0.03 
10 0.03 0.03 0.04 0.02 0.03 0.02 0.03 0.04 
11 0.01 0.02 0.04 0.04 0.03 0.03 0.04 0.02 
12 0.02 0.02 0.01 0.02 0.02 0.03 0.05 0.03 
13 0.01 0.02 0.04 0.03 0.02 0.03 0.03 0.03 
14 0.02 0.02 0.01 0.03 0.02 0.03 0.03 0.04 
15 0.04 0.03 0.03 0.06 0.04 0.03 0.05 0.03 
16 0.04 0.05 0.04 0.02 0.04 0.02 0.06 0.05 
17 0.03 0.02 0.03 0.02 0.02 0.01 0.04 0.01 
18 0.05 0.04 0.05 0.04 0.02 0.03 0.03 0.04 
19 0.03 0.04 0.08 0.02 0.03 0.02 0.02 0.02 
20 0.01 0.03 0.03 0.01 0.03 0.01 0.03 0.04 
21 0.02 0.02 0.02 0.04 0.03 0.03 0.05 0.02 
22 0.02 0.03 0.00 0.03 0.03 0.01 0.05 0.03 
23 0.02 0.03 0.01 0.04 0.02 0.02 0.03 0.02 
24 0.02 0.01 0.01 0.01 0.03 0.01 0.03 0.07 
25 0.01 0.04 0.02 0.04 0.03 0.03 0.03 0.02 
26 0.02 0.02 0.01 0.02 0.03 0.02 0.01 0.02 
27 0.02 0.04 0.04 0.05 0.04 0.01 0.03 0.02 
28 0.02 0.03 0.04 0.04 0.03 0.03 0.02 0.02 

Average 0.02 0.02 0.03 0.03 0.03 0.02 0.03 0.03 
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Table A3 

Weighted RMSEs in ICCs for Verbal Measure  

  2 3 4 5 6 7 8 9 
1 0.01 0.03 0.04 0.01 0.02 0.02 0.02 0.02 
2 0.03 0.02 0.03 0.01 0.03 0.03 0.03 0.03 
3 0.03 0.03 0.05 0.06 0.05 0.06 0.07 0.08 
4 0.04 0.05 0.06 0.06 0.07 0.05 0.04 0.08 
5 0.01 0.05 0.02 0.00 0.04 0.03 0.02 0.04 
6 0.03 0.05 0.06 0.05 0.04 0.07 0.06 0.06 
7 0.03 0.01 0.01 0.01 0.00 0.01 0.03 0.02 
8 0.07 0.07 0.01 0.05 0.02 0.02 0.07 0.01 
9 0.03 0.02 0.04 0.05 0.06 0.04 0.06 0.09 
10 0.02 0.02 0.04 0.04 0.02 0.03 0.05 0.05 
11 0.00 0.01 0.01 0.02 0.02 0.01 0.01 0.03 
12 0.03 0.03 0.02 0.04 0.03 0.03 0.05 0.03 
13 0.01 0.02 0.01 0.03 0.01 0.01 0.04 0.03 
14 0.02 0.03 0.02 0.05 0.02 0.04 0.04 0.04 
15 0.01 0.02 0.04 0.01 0.03 0.02 0.04 0.01 
16 0.03 0.06 0.03 0.04 0.03 0.07 0.04 0.03 
17 0.04 0.04 0.03 0.02 0.06 0.02 0.02 0.03 
18 0.02 0.01 0.02 0.02 0.02 0.03 0.03 0.02 
19 0.05 0.04 0.02 0.02 0.04 0.04 0.02 0.04 
20 0.00 0.02 0.04 0.05 0.03 0.06 0.02 0.06 
21 0.03 0.03 0.03 0.03 0.05 0.03 0.02 0.04 
22 0.03 0.01 0.02 0.01 0.04 0.02 0.02 0.01 
23 0.02 0.01 0.03 0.03 0.03 0.02 0.04 0.02 
24 0.03 0.04 0.05 0.05 0.06 0.03 0.03 0.05 
25 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.01 
26 0.03 0.02 0.03 0.03 0.02 0.03 0.05 0.04 
27 0.03 0.03 0.04 0.03 0.02 0.02 0.04 0.04 
28 0.02 0.03 0.04 0.03 0.05 0.03 0.08 0.06 
29 0.04 0.06 0.07 0.05 0.07 0.05 0.06 0.04 
30 0.10 0.03 0.04 0.07 0.06 0.05 0.05 0.07 

Average 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.04 
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Figure A3. Model-based vs. empirical average variance for a- and b-parameters. 
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Figure A4. Model-based vs. empirical average variance for a- and b-parameters after 

deleting two very easy Quantitative items.  
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Figure A5. Typical ability distributions for Quantitative and Verbal measures. 
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Appendix B 

Results for Adaptively Administered Items 
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Figure B1. ICCs for four Quantitative CAT items. 
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Figure B2. Weighted RMSEs in ICCs for CAT items on Quantitative measure. 
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Table B1 

Weighted RMSEs in ICCs for CAT Items on Quantitative Measure  

  2 3 4 5 6 7 8 9a 10a 11a 

1 0.03 0.03 0.03 0.06 0.03 0.04 0.05 0.06 0.01 0.05 
2 0.01 0.01 0.02 0.05 0.03 0.04 0.04    
3 0.00 0.02 0.07 0.03 0.01 0.00 0.01 0.03 0.03  
4 0.01 0.05 0.03 0.02 0.07 0.04 0.03 0.05 0.11  
5 0.07 0.04 0.01 0.04 0.01 0.06 0.04 0.07 0.03  
6 0.03 0.03 0.02 0.03 0.01 0.02 0.03 0.04 0.05 0.07 
7 0.04 0.06 0.04 0.03 0.05 0.08 0.02 0.04 0.06 0.06 
8 0.03 0.03 0.03 0.04 0.03 0.02 0.02 0.02 0.03  
9 0.07 0.05 0.03 0.04 0.05 0.03 0.02 0.03 0.05 0.06 
10 0.02 0.04 0.02 0.02 0.02 0.00 0.02 0.03   
11 0.06 0.06 0.06 0.06 0.05 0.07 0.07 0.05 0.05  
12 0.02 0.04 0.05 0.04 0.04 0.07 0.04 0.06 0.10  
13 0.07 0.04 0.06 0.10 0.09 0.06 0.10    
14 0.02 0.03 0.04 0.06 0.08 0.04 0.03 0.08   
15 0.03 0.07 0.04 0.06 0.08 0.06 0.06 0.05 0.05 0.01 
16 0.08 0.03 0.06 0.01 0.04 0.01 0.08 0.02   
17 0.02 0.02 0.01 0.04 0.02 0.03 0.06 0.06   
18 0.02 0.02 0.04 0.02 0.04 0.00 0.05 0.04 0.02  
19 0.03 0.03 0.02 0.03 0.01 0.02 0.03 0.06 0.03  
20 0.01 0.04 0.06 0.02 0.05 0.04 0.03    
21 0.05 0.03 0.05 0.13 0.03 0.01 0.02    
22 0.04 0.02 0.06 0.03 0.04 0.01 0.04 0.02 0.04  
23 0.01 0.03 0.04 0.03 0.07 0.01 0.03 0.05 0.03  
24 0.05 0.17 0.05 0.06 0.02 0.02 0.04 0.03   
25 0.03 0.08 0.03 0.03 0.03 0.04 0.02 0.01 0.03  
26 0.04 0.03 0.01 0.04 0.02 0.02 0.07 0.08   
27 0.08 0.05 0.04 0.03 0.05 0.02 0.04    
28 0.01 0.03 0.01 0.03 0.02 0.00 0.01 0.05   
29 0.04 0.02 0.04 0.03 0.03 0.05 0.03 0.04 0.04 0.05 
30 0.01 0.10 0.06 0.20 0.02 0.09 0.04 0.07 0.08  

a Some cells are empty as the number of calibrations varied from 8 to 11 for different items. 
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Table B2 

Weighted RMSEs in ICCs for CAT Items on Quantitative Measure (P & P or Bank Parameter 

Estimates) 

  1 2 3 4 5 6 7 8 9 a 10 a 11 a 

1 0.09 0.06 0.08 0.07 0.05 0.09 0.07 0.06 0.06 0.08 0.05 
2 0.02 0.01 0.01 0.03 0.06 0.02 0.05 0.04    
3 0.03 0.03 0.05 0.08 0.05 0.04 0.03 0.03 0.06   
4 0.11 0.11 0.15 0.13 0.10 0.17 0.15 0.13 0.15   
5 0.03 0.05 0.04 0.02 0.02 0.03 0.04 0.02 0.06   
6 0.04 0.06 0.01 0.03 0.06 0.05 0.05 0.07 0.08 0.09 0.10 
7 0.07 0.02 0.01 0.04 0.04 0.05 0.03 0.06 0.03 0.03 0.05 
8 0.06 0.06 0.06 0.06 0.06 0.04 0.06 0.07 0.05 0.05  
9 0.06 0.03 0.05 0.06 0.06 0.03 0.07 0.06 0.08 0.05 0.04 
10 0.04 0.04 0.08 0.06 0.03 0.03 0.04 0.07 0.03   
11 0.05 0.01 0.02 0.01 0.04 0.04 0.04 0.05 0.04   
12 0.10 0.10 0.07 0.08 0.06 0.10 0.06 0.07 0.04   
13 0.06 0.02 0.03 0.03 0.05 0.06 0.02 0.05    
14 0.12 0.13 0.15 0.16 0.17 0.19 0.14 0.15 0.20   
15 0.06 0.09 0.13 0.08 0.11 0.14 0.10 0.11 0.11 0.02 0.06 
16 0.04 0.06 0.03 0.04 0.05 0.02 0.03 0.06 0.03   
17 0.08 0.10 0.10 0.09 0.05 0.10 0.10 0.11 0.13   
18 0.07 0.06 0.06 0.05 0.08 0.06 0.08 0.04 0.05 0.06  
19 0.03 0.02 0.04 0.03 0.05 0.02 0.02 0.01 0.05 0.03  
20 0.05 0.05 0.03 0.06 0.05 0.04 0.01 0.03    
21 0.05 0.05 0.02 0.02 0.09 0.05 0.04 0.06    
22 0.07 0.05 0.05 0.03 0.04 0.04 0.06 0.03 0.05 0.03  
23 0.06 0.08 0.10 0.10 0.09 0.13 0.06 0.10 0.11 0.10  
24 0.14 0.18 0.12 0.19 0.13 0.12 0.15 0.18 0.16   
25 0.10 0.07 0.12 0.12 0.12 0.09 0.06 0.08 0.11 0.06  
26 0.11 0.13 0.10 0.12 0.08 0.10 0.12 0.16 0.04   
27 0.06 0.11 0.10 0.08 0.08 0.02 0.07 0.08    
28 0.05 0.04 0.07 0.06 0.06 0.06 0.05 0.06 0.08   
29 0.07 0.06 0.07 0.05 0.04 0.06 0.07 0.03 0.04 0.03 0.03 
30 0.11 0.11 0.18 0.15 0.24 0.13 0.14 0.13 0.13 0.10  

a Some cells are empty as the number of calibrations varied from 8 to 11 for different items. 
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